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QUANTUM EXTENSION OF CHILD-LANGMUIR LAW

The Child-Langmuir law gives the maximum electron current that can be

transmitted across a parallel, planar gap in terms of the incident energy

of the electrons and the gap bias voltage. This maximum value, known as

the limiting current, arises because the space charge in the diode presents

a potential barrier to the incident electrons. While there are

modifications due to geometrical and relativistic effects, the limiting

current remains a fundamental quantity characterizing the beam-gap

interaction.
2

In the emerging fields of nan,,-electronics, tunneling microscopy and

vacuum micro-,lectronics, diode gaps and junctions with scales down to tens

of angstroms are being considered. On such a microscopic scale, quantum

effects may no longer be neglected. Several questions then arise: Is

there a limit on the current that can be transmitted across the gap when

quantum effects are taken into account? Is the transmitted current

quantized? How is the classical value recovered, in conformity with the

correspondence principle? This paper addresses these questions.

Here, we extend the classical work of Child and Langmuir to the

quantum regime by considering a parallel, planar gap. We will use the

familiar mean-field theory expressed by the self-consistent, coupled

Schrldinger and Poisson Equations in the Hartree approximation. Similar

approaches have been taken, for example, to study the effects of space

charge on the device characteristics of superlattice structures. 3 Thus, we

solve the one-dimensional Schrodinger Equation, (in standard notation, with

e > 0),

2m dx2 - eV = E*, (1)
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and the Poisson Equation

d2d2V •
- = e44 /c (2)dx 2  0

in the gap region, defined to be 0 < x < D.

Implicit in Eqs. (1) and (2) are the following assumptions. (a) The

usual Schrodinger wave function qo(x) is interpreted as the density of a

continuum el .tror fluld, Ll ,croscopic numbeL density Le;u1 it = 4 .

(b) The electrostatic potential V(x) is time-independent, thus allowing the

iE t/1separation of the temporal dependence in the form *(x)e -  . (c) All

electrons are non-relativistic, and they enter the gap at x = 0 with the

same kinetic energy. (d) The electron density in the gap is sufficiently

small that single particle wave functions do not overlap significantly.

(e) Any one electron sees an average electric field due to all others

present in the gap. Thus, what we are considering is a situation where the

electron density in the gap is sufficiently high that the self fields of

the electrons are no longer negligible, but is low enough that we may omit

consideration of the exclusion principle. If the average number of

electrons becomes too low, large fluctuations in both the current and the

self-potential will occur, and the quantum correction calculated in this

paper should then be viewed only as a first approximation.

The boundary conditions to Eqs. (1) and (2) are formulated as follows.

Let V be the gap bias voltage, which may be zero, positive or negative.g

Then V(0) = 0 and V(D) - V . The boundary conditions on the wave function

* are derived from the conditions that * be matched, at x = 0, to the sum

iklX

of an incident plane wave *i(x) = Ae and a reflected plane wave Wr(x) =

-ik1x ik2x
Be and, at x = D, to a transmitted plane wave * t(x) = Ce Here,
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A, B, C are constants and k, = (2mE/t2)1/2, k2 = [2m(E+eVg )/t2]1 /2 . Charge

conservation requires that the current density J = e(ih/2m)(*' - 4'4) be

constant for all x. Here, a prime denotes a derivative with respect to x.

In terms of the wave amplitudes, J = (ej/m)k2jCj 2 = (el/m)kl(IA1 2 - IB12).

In keeping with the classical theory, we shall assume that E and V areg

given, with E + eV > 0. We shall determine the conditions on J for theg

existence of solutions to Eqs. (1) and (2).

To see clearly the transition from the classical to the quantum

regime, we find it convenient to use non-dimensional quantities:

x= x/D, V=eV/E, E=E/eVs, J = J/Js, s n nns = J j2/ns,

g * eV /E, where the voltage scale Vs  412 (2emD2), the current density

scale Js = Co1 3/(4m 2eD5) and the number density scale ns  C t2/(2e 2mD4).

We next represent the wave function *(x) f (n-s 1/2 p(xx)ei ( ) in terms of

the non-dimensional amplitude p(x) and phase e(x), both assumed real.

Equations (1) and (2) yield the following coupled equations for p(x) and

E dx + +p 4  p =

d2V 2 (4)
; 2 =P

where we have introduced the dimensionless "perveance"

X 2 3/2 (5)

which is proportional to the current. In terms of X, the phase e(x) is

given by

3



()= ()/ 2  X d/p2(-) (6)

where, without loss of generality, we have assigned 0(1) = 0 [Ref. 4]. The
4

boundary conditions to Eqs. (3) and (4) are

V(0) = 0 (7)

VG) = + (,)

p(l) = (X/4) 1/2/(1 + g) 1/4 (9)

p'(1) = 0. (10)

It can easily be shown that the classica] limit is obtained by simply

ignoring the first term P /E in Eq. (3) and that the quantum behavior

enters only through that term. The classical behavior dominates when

E 1 1, and the transition to the quantum regime is expected to occur when

= 0(1). Thus, in the classical limit (E i), Eq. (3) gives

21P= () 1 1/2 (11)

(1 +

which, when cast back in dimensional form, is simply the statement of

energy conservation in the classical description of electron motion.

Indeed, the Child-Langmuir law may be recovered by substituting Eq. (11)

into Eq. (4). The resultant second order differential equation in V,

subject to boundary conditions (7) and (8), may be shown to admit no

solution whenever X > Xc , where

Xc = L- [1 + (1 + g)1 2  (12)
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This is essentially the Child-Langmuir law' 2 in normalized form. It gives

the maxicum current that can be transmitted, in steady state, in terms of

the injection energy E and the gap bias voltage V . Note that Xc is

independent of E [Fig. 1].

Retaining the p" term in Eq. (3), our problem becomes: for specified

and +9, for what values of X do equations (3) and (4) have solutions,

subject to Eqs. (7)-(10). We have obtained numerical solutions4 for a wide

range of values of E and g. In particular, we have found that there is a

critical value of X, called Xq, above which no solution exists. According

to this formulation, Xq represents the maximum current that can reach x =

1, independent of the nature of the emitter at x - 0, since the boundary

conditions (9) and (10) specify only the transmitted flux at x = 1.

Our results are summarized in Fig. 1, which shows X as a function ofq

for different values of # . The classical value, from Eq. (12), is also

shown. Note that the classical value is indeed approached for large values

of E while, for small values of E, Xq greatly exceeds the classical value.

We attribute this finding to the tunneling of electrons through the

potential barrier presented by the average space charge field of other

particles in the gap. In fact, using the numerically computed potential

barrier (-V), [Fig. 2], we have found that the WKBJ estimates on the

tunneling across such a barrier are consistent with the transmission

coefficient that was computed numerically [Fig. 3]. For small E, Fig. 1

suggests Xq 1/E.

The transmittable current is not quantized in the above formulation.

For all X < Xq, solutions to Eqs. (3), (4) subject to (7) - (10) can always

be found. 5 Figure 2 shows a sample solution. From the numerical
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solutions, we may construct a reflection coefficient CR a I'*r/*i 12 and a

transmission coefficient CT a (k2/kl)Ivt/4i1
2 relative to the incident flux

(current).6 Clearly, CR + CT - 1. The transmission coefficient is shown

in Fig. 3.
0 116 -3

As an example, take D = 30A, then Vs = 4.24mV, ns = 2.6 x10 cm ' Js

= 8.06 kA/cm2 . If we further take E = 1 and +g = 0.5, then Fig. 1 gives Xq

= 102, whereas the classical theory Eq. (12) gives Xc = 19.6. This value

of X means that the maximum current density that can be transmitted acrossq

such a gap is 4.11 x 105A/cm2 from the quantum mechanical theory. On the

other hand, according to the classical theory, the maximum current density

would only be 7.89 x 104A/cm2 , a factor of 5 lower. The solutions for this

example with X = 95 are shown in Fig. 2, from which we can obtain the

average electron density <n> and the spatial scale L over which the wave

function varies. One can readily deduce that <n>1/3 L < 1. Thus, the

electron density is sufficiently low to ignore the exclusion principle,

justifying the present mean field theory approach.

In summary, self consistent solutions to Eqs. (1), (2) have been

constructed. From these solutions, we have found that the macroscopic

current that can be transmitted across a gap can exceed the classical value

of Child and Langmuir, sometimes by a large amount, because of tunneling

effects. Dimensionless parameters have been identified whereby the

transition from the quantum regime to the classical regime may be expected.

One of us (YYL) was supported by the Office of Naval Research and by

the Strategic Defense Initiative Organization, managed by the Harry Diamond

Laboratory. The others were supported by the Defense Advanced Research

Projects Agency.
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4. Numerically, we integrate Eqs. (3) and (4) backward, from x = 1 to

x 0 0. The boundary conditions (7), (8) specify the potential imposed

on the gap, whereas (9) and (10) follow from the requirement that the

solution at x - 1 matches a (preassigned) transmitted wave *t(x). To

integrate (3) and (4), we use (8) - (10) and, in addition, assume a

value for V'(1), as initial conditions at x = 1. The value V'(1) is

adjusted se that condition (7) is satisfied, after integrating (3),

(4) back to x = 0. The incident wave and the reflected wave

amplitudes can then be inferred from the numerical solutions.

5. For X < Xq, we find two solutions of Eqs. (3), (4) satisfying (7) -

(10), for specified values of E, +g, and X. For various reasons, we

argue that the one with higher potential energy is inaccessible. In

this paper, we focus only on the solutions with lower potential

energy. When X = Xq, the two solutions merge.
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6. The present paper essentially treats a nonlinear scattering problem of

beam injection into a gap by an external source. It is conceivable

that a different physical situation would require different boundary

conditions on * at x = 0 that would lead to the interesting

possibility of quantization of both E and X. The existence of such

states, and their stability, will be the subjects of a future

publication. We should add, however, that regardless of the boundary

conditions on * that would be imposed at x = 0, the normalized

critical current X calculated in this paper is still the upper limit.
q
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g= 1 /2 X,
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Fig. I - The solid curves show the normalized critical current (y,) as a function of E for

o, = 0. ±1/2. The classical values (x,) are indicated by the dotted lines.
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Fig. 2 - The solutions p, 0 and V for the case E = 1, ) = 95, and o = 0.5. Tunneling effects are

apparent as E + v < 0 over a wide range of i.
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